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Abstract
A review of recent simulation work in the area of phase transitions in ionic
systems is presented. The vapour–liquid transition for the restricted primitive
model has been studied extensively in the past decade. The critical temperature
is now known to excellent accuracy and the critical density to moderate
accuracy. There is also strong simulation-based evidence that the model is
in the Ising universality class. Discretized lattice versions of the model are
reviewed. Other systems covered are size- and charge-asymmetric electrolytes,
colloid–salt mixtures, realistic salt models and charged chains. Areas of future
research needs are briefly discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Electrolyte solutions and molten salts are examples of systems with strong Coulombic
interactions. There are many other technologically relevant systems for which Coulombic
interactions are important, including ionic liquids [1], charge-stabilized colloids and micellar
solutions of ionic surfactants. Such systems are encountered in enhanced oil recovery,
biochemical separations, energy production operations, electrochemical processes and many
other applications. Proteins and nucleic acids carry charges along their backbones and are
strongly influenced by the presence of ions in solution. Simple theoretical approaches (such
as the standard DLVO theory [2] of interactions between charged surfaces) are increasingly in
error in the presence of multivalent ions at biologically relevant concentrations [3]. Counterion
valence has been shown experimentally to exert a large influence on the structure and dynamics
of highly charged polyelectrolyte solutions [4]. Multivalent salts and charged proteins are
potent agents for DNA aggregation and precipitation [5].

Understanding the structure and thermodynamics of such systems is far from complete.
Detailed atomistic-level simulations, especially in the presence of explicit solvent,cannot reach
the length and time scales accessible using simpler model systems. In addition, it is generally
harder to decipher the connections between coarse aspects of the molecular architecture (e.g. ion
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valence and size) and macroscopic properties when using atomistic models linked to specific
real systems. In recent years, a significant body of simulation work has accumulated on
phase transitions in ionic systems, dealing primarily with ‘primitive models’ that contain no
explicit solvent. Even for these simplified models, simulations of Coulomb-dominated systems
encounter significant sampling difficulties. For a simple 1:1 primitive model electrolyte at
conditions near the liquid–vapour critical point, the thermal energy is only 1/20th of the energy
of two ions at contact. As a result, the systems are strongly associating and hard to equilibrate.
Early simulation work in the area produced results that (in retrospect) turned out to suffer from
some inadequate sampling and equilibration problems, even though most of the qualitative
features of the observed behaviour were correct.

Partly as a result of the increased availability of consistent simulation data, improved
theories of systems dominated by Coulombic interactions have become available in the past
few years [6–8]. Unlike earlier theoretical approaches [9, 10], these predict the correct trends
with respect to size and valence asymmetries. Recent simulation studies have also contributed
towards clarification of the character of ionic criticality, a question of great theoretical
importance [11–13] and the subject of multiple experimental investigations (e.g. [14–16]).
Recent reviews of theoretical tools for charged systems [17] and ionic criticality [18] are
available.

The objective of the present brief review is to summarize simulation work on the phase
and critical behaviour of systems dominated by Coulombic interactions. In section 2, work on
the well-studied restricted primitive model of ionic solutions is reviewed. Other spherically
symmetric ionic systems, including charge- and size-asymmetric primitive models, are the
focus of section 3. Section 4 is devoted to charged chains, networks and colloid–salt mixtures.
Finally, section 5 touches upon unresolved questions and research needs.

2. The restricted primitive model

The simplest and best studied system dominated by Coulombic interactions is the ‘restricted
primitive model’ (RPM) consisting of charged hard spheres of equal diameter, σ , in a uniform
continuum of dielectric constant ε. Half of the spheres carry a positive and half a negative
charge of identical magnitude, q . The energy of interaction between two particles is

Ui j =





+∞ ri j < σ
qi q j

4πεε0ri j
ri j � σ , (1)

where ri j is the distance between spheres i and j , qi and q j their respective charges and ε0 the
dielectric permittivity of vacuum. It is customary to choose a reduced system of units so that
temperature is normalized by the energy of interaction of two ions at contact,

T ∗ = 4πεε0σkT

q2
, (2)

where k is Boltzmann’s constant. The total number density in the system is

ρ∗ = N+ + N−
V

σ 3, (3)

where N+ = N− is the number of positive and negative particles and V is the system volume.
Vorontsov-Velyaminov et al [19, 20] were the first to propose that the RPM has a liquid–

vapour transition and critical point, using constant-pressure Monte Carlo simulations; they
obtained Tc ≈ 0.095 and ρc ≈ 0.17. Stell et al [21] used equation of state data from simulations
and theoretical approximations of the free energy to obtain Tc ≈ 0.085 and ρc ≈ 0.01. While
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Table 1. Recent results for the critical parameters of the RPM.

Ref. T ∗
c ρ∗

c

[37] 0.049 33 ± 0.000 05 0.075 ± 0.001
[31] 0.049 17 ± 0.000 02 0.080 ± 0.005
[32] 0.049 0 ± 0.0003 0.070 ± 0.005
[33] 0.049 2 ± 0.0003 0.062 ± 0.005
[34] 0.048 9 ± 0.0003 0.076 ± 0.003

the estimated values of the critical parameters differ significantly from ‘modern’ values given in
table 1, these early studies established firmly that the system has a low-temperature transition.

Several years after these first studies, the present author published an estimate of the
critical point of Tc = 0.056 and ρc = 0.04 using Gibbs ensemble Monte Carlo [22] with
single-ion transfers. Orkoulas and Panagiotopoulos [23] also used the Gibbs ensemble and
introduced biased pair transfers used by subsequent investigations—they obtained Tc = 0.053
and ρc = 0.025. It should be noted that it is now known that the Gibbs ensemble is not well
suited for high precision phase coexistence calculations in the immediate vicinity of critical
points [24]. Clearly, significant uncertainties remained as to the location of the critical point
of the RPM as late as ten years ago.

A methodological advance in calculations of critical points of fluids that do not have
particle–hole symmetry was the mixed-field finite-size scaling approach of Bruce and
Wilding [25, 26]. The method is based on matching results for the scaled order parameter
probability distribution to the universal curve appropriate for the universality class of the
system under study. For bulk fluids, the appropriate scaling variable is a linear combination
of density and energy, assuming that there is no pressure mixing in the scaling fields [27].
This method has been used by most simulation studies of the vapour–liquid critical point of
the RPM in the past decade. The method works well in combination with the grand canonical
histogram reweighting approach of Ferrenberg and Swedsen [28] that allows extrapolation of
results from a simulation run to a range of chemical potentials and temperatures in its vicinity.

The critical parameters of the RPM were obtained using the Bruce–Wilding approach
by Caillol et al [29–31] in hyperspherical boundary conditions and Orkoulas and
Panagiotopoulos [32] in standard cubic boundary conditions. Yan and de Pablo [33] used it in
combination with hyper-parallel tempering Monte Carlo that allows for multiple replicas of the
simulation at different conditions of temperature and chemical potential. Panagiotopoulos [34]
obtained the critical parameters of the continuum RPM by extrapolating results on the finely
discretized lattice analogue to the RPM to infinitely fine discretization.

The Bruce–Wilding approach used in these studies of RPM criticality assumes that the
system is in the three-dimensional Ising universality class. At most, one may claim consistency
with Ising critical behaviour. An unbiased finite-size extrapolation method using the grand
canonical ensemble [35] was applied to a discretized version of the RPM by Luijten et al [36].
Kim and Fisher [37] examined the discretization dependence of the critical behaviour and
extrapolated to the continuum limit. The unequivocal conclusion from these two studies
was that the RPM is in the three-dimensional Ising universality class, as also argued on
theoretical grounds [38]. Some earlier studies of the heat capacity in the canonical (NV T )
ensemble [39, 40] did not observe a peak near the critical point and interpreted this as an
indication of non-Ising behaviour. However, these observations were later shown to be due to
the suppression of density fluctuations in the canonical ensemble [41].

Table 1 shows a summary of recent results for the critical parameters of the RPM. There
is generally good agreement between simulations that used different boundary conditions and
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sampling algorithms. The critical temperature has relatively small uncertainties; the two most
recent estimates [37, 31] disagree by more than their combined error bars but the difference is
only 0.3% of the value of T ∗

c . The other simulations listed in the table (with more generous
error bars) overlap these two. This difference may be due to the use of the Bruce–Wilding
approach in [31] versus an unbiased extrapolation with no assumption of universality class
in [37]. The situation for the critical density is less satisfactory, with large relative uncertainties
and several differences outside the combined simulation uncertainties. Kim and Fisher [27]
suggested that the use of the Bruce–Wilding method with no pressure mixing could lead to
unreliable estimates of the critical density, but is not likely to result in major errors in the
critical temperature. Clearly, the precise determination of the critical density for the RPM
remains a topic for future work.

It has already been mentioned that several recent studies used a discretized version of
the RPM. In this approach, calculations are performed on a simple cubic lattice of spacing
l less than the particle diameter σ , with pre-computed interactions between all lattice sites
for computational efficiency [42, 43]. Parameter ζ = σ/ l controls how closely the model
approximates continuous space. For ζ = 1, the lattice-discretized RPM has a tricritical
point and an order–disorder transition, as first observed by Dickman and Stell [44]. The
lattice RPM model with ζ = 2 was also found [42] to have phase behaviour qualitatively
different from the continuum model. However, for ζ � 3 the phase behaviour is qualitatively
identical to the continuum; critical point and coexistence curves match continuum data within
a few per cent. Lattice discretization effects have been subsequently analysed in detail using
theoretical approaches [45–47] and simulations [34, 37]. Phase diagrams of the ζ = 1
model with additional anisotropic interactions [48] and nearest-neighbour repulsions and
attractions [49, 50] are also available.

In addition to the liquid–vapour transition, the RPM has several possible solid phases.
Simulations of fluid–solid and solid–solid equilibria for the RPM were performed by Smit
et al [51] and Vega et al [52], who identified a liquid–bcc transition at low temperatures and
a liquid–fcc one at high temperatures. Bresme et al [53] identified additional order–disorder
transitions and triple points.

Finally, closely related to the RPM are systems of charged hard dumbbells or tethered
dimers, since there is strong ion pairing in the (untethered) RPM at its critical temperature.
For the contact tethered dimer of equal-size opposite charges, the critical temperature is
almost the same as for the unconstrained RPM, but the critical density is significantly higher:
T ∗

c = 0.049 11 ± 0.000 03, ρ∗
c = 0.101 ± 0.003 [54]. Tethered-ion systems of varying

tether length were studied in [55]. Interestingly, as the tether length approaches infinity, care
must be exercised to prevent an ‘entropy catastrophe’ and obtain a proper thermodynamic
limit. The dependence of the critical parameters on tether length was found to be smooth but
non-monotonic.

3. Generalized primitive models and ionic salts

For the RPM model discussed in the previous section all ions have the same size and absolute
charge and only interact through Coulombic forces and hard-sphere repulsions. This section
summarizes simulation studies of ionic systems for which these constraints have been relaxed.

Phase diagrams of size-asymmetric electrolytes were obtained by Romero-Enrique et al
[56] using a fine-lattice discretization approach and by Yan and de Pablo [57, 58] using a
multidimensional parallel tempering algorithm. The key finding from these studies was that
the critical temperature and critical density are at a maximum for the size-symmetric case and
then drop off as the size asymmetry increases. This is in contrast to predictions of commonly
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Figure 1. Reduced critical temperature versus size asymmetry parameter δ = σ+ − σ−
σ+ + σ− . Data are

from [56, 59].
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Figure 2. Reduced critical density versus size asymmetry parameter δ = σ+ − σ−
σ+ + σ− . Data are

from [56, 59].

used theories for ionic fluids [9, 10]. Newer theories have been developed [6–8] that predict
the correct trends of the critical parameters with size asymmetry.

Multivalent electrolytes have been studied much less than monovalent ones, despite their
importance in micellar, colloidal and biological systems. Detailed studies of 2:1 and 3:1
electrolytes for a broad range of size ratios were performed by Panagiotopoulos and Fisher [59]
and Yan and de Pablo [60]. The main finding from these studies is that the critical temperature
and density show a maximum for multivalent ions of increasing size as the valency is increased,
as illustrated in figures 1 and 2. Reference [59] suggested that for small multivalent ions with
large monovalent counterions (for small values of δ in figures 1 and 2) the vapour–liquid phase
transition is likely to disappear because of the formation of an open network.

Reščič and Linse [61] have investigated the critical parameters for a 10:1 electrolyte at the
point counterion limit using thermodynamic scaling Monte Carlo. Linse [62, 63] suggested
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a scaling law for the critical temperature of systems with charge ratios up to 80:1, also at the
point counterion limit. A study of charge-asymmetric electrolytes with charge ratios up to
10:1 was performed in [64], using reservoir grand canonical simulations. Some discrepancies
were observed between the results of this study and the scaling law of Linse that remain to
be resolved. However, it is clear from these studies that salt-free colloidal systems phase
separate through effective like-ion attractions at sufficiently high couplings, as also seen
experimentally ([65, 66]—but reference [67] suggests an alternative explanation). This issue
has been the topic of several theoretical [68–70] studies.

Realistic intermolecular potentials for ionic systems include soft repulsions and dispersion
forces in addition to the Coulombic interactions [71]. Simulation studies of phase transitions
for realistic salt model salts have been performed by Guissani and Guillot for NaCl [72] and
NH4Cl [73]. Thermodynamic integration methods were used to obtain the melting point for
the Fumi–Tosi model of NaCl [74] in good agreement to experimental data. Studies of charged
Yukawa systems are also available [75–77].

4. Charged chains and ionic mixtures

Polyelectrolytes and polyampholytes are polymers that contain charged groups along their
linear backbones. They can be found naturally in the form of proteins and nucleic acids,
or they can be made synthetically. They are involved in industrial processes such as waste
water treatment or oil recovery and are found in many consumer products. An important
natural polyelectrolyte is DNA, the main carrier of genetic information. It is well known
that multivalent ions induce attractions between DNA strands mediated by strong correlation
effects [5]. Experiments have shown precipitation and subsequent redissolution of DNA with
addition of polyamine salts [78].

There have been relatively few studies of phase transitions in charged chains. Orkoulas
et al [79] studied fully charged lattice chains of chain lengths up to 24 beads, along with
monomeric counterions. The critical density was found to be approximately independent of
chain length, in sharp contrast to homopolymers, for which the critical density approaches zero
as the chain length increases. Cheong and Panagiotopoulos [80] studied polyampholyte lattice
chains with both charged and uncharged beads and determined that the critical parameters
are sensitive functions of the charge sequence, as illustrated in figure 3. Phase transitions in
polyelectrolyte networks with explicit counterions were observed by Yan and de Pablo [81].

Real charged chain or colloidal systems almost always have varying amounts of salt or
other ionic species. Simulations of phase transitions in charged colloidal (macroion) systems
with added salt have been performed by Hynninen et al [82]. The critical parameters were
determined for macroion to counterion charge asymmetries of 2:1, 3:1 and 10:1. This study
found that binary electrolyte mixtures are type I mixtures, with the two components mixing
continuously. A typical configuration from the 10:1 system near the mixture critical point for
salt mole fraction of 48% is shown in figure 4. Large voids and clusters are apparent—these
may be related to similar observations in recent simulations using effective potentials [83] and
to earlier experiments [66] that have generated significant controversy [67].

5. Possible future directions

Simulations of phase transitions of ionic systems over the past decade have greatly expanded
the range of systems for which quantitative results are available. This is primarily due to the
development of sophisticated Monte Carlo sampling and simulation data analysis algorithms.
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Figure 3. Phase diagrams of fully charged chains of length 16 on a simple cubic lattice (data
from [80]). The sequences from top to bottom are P8N8, P4N4P4N4 and PN2P3NPN3P2NPN,
where P and N are positive and negative charges.

Figure 4. Snapshot of a colloid–salt mixture near a critical point for phase demixing. Large spheres
are macroions with charge +10q, white small spheres are coions with charge +q and dark (red)
small spheres counterions with charge −q (data from [82]).

For vapour–liquid transitions, critical temperatures of simple models such as the RPM are now
known to fractional accuracies of 10−3 or better. Critical densities are known with much less
accuracy—improving the methods for their determination is a priority area for future research.

Another major limitation of current approaches is their inability to deal with extremely
large charge asymmetries. There are few results for phase transitions in systems with charge
asymmetries significantly above 10:1. Novel sampling methods are needed for significantly
expanding the range of charge asymmetries that can be successfully simulated and for
resolving remaining questions on the scaling behaviour of critical parameters for large charge
asymmetries.
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In recent years, methods to calculate electrostatic interactions have emerged [84] that
promise to be considerably faster than conventional Ewald summation. It would be interesting
to see if such methods can be used to speed up ionic phase transition simulations. It would also
be of interest to incorporate dielectric contrast between particles and surrounding solvent in the
simulations—at the moment such calculations are prohibitively expensive. Faster simulation
algorithms may also facilitate calculations in ‘non-primitive’ systems that take into account
explicitly the molecular character of solvents in which most real ionic systems exist.
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